
Cosmological Hydrogen Recombination:

The effect of extremely high-n states

Daniel Grin 

in collaboration with Christopher M. Hirata

Berkeley Cosmology Seminar

10/26/09

1

1Thursday, October 29, 2009



OUTLINE

! Motivation: CMB anisotropies and recombination spectra

! Recombination in a nutshell

! Breaking the Peebles/RecFAST mold

! RecSparse: a new tool for high-n states

! Forbidden transitions

! Results

! Ongoing/future work
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CLONE WARS

! Planck (launched May 2009) will make 
cosmic-variance limited CMB anisotropy 
measurements up to l~2500 (T), and l~1500 
(E)

! Wong 2007 and Lewis 2006 show that            needs to be predicted to several 
parts in 104 accuracy for Planck data analysis
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! Inferences about inflation will be wrong if recombination is improperly modeled

! Cosmological parameter inferences will be off if recombination is improperly modeled 

(Wong/Moss/Scott 2007)

! Leverage on new physics comes from high l. Here the details of recombination matter!

RECOMBINATION, INFLATION, AND REIONIZATION

! Planck uncertainty forecasts using MCMC

0.022 0.0225 0.023
Ωb h2

0.93 0.94 0.95 0.96 0.97 0.98
ns

2.98 3 3.02 3.04 3.06
log[1010 As]

0.08 0.09 0.1 0.11

Need to do eV physics right to infer anything about 1015 GeV physics!

CAVEAT EMPTOR:
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Bad recombination history yields biased inferences about reionization

4Thursday, October 29, 2009



!                    :  Decoupling occurs during recombination

WHO CARES? 

SMEARING AND MOVING THE SURFACE OF LAST SCATTERING 

(SLS)

! Photons kin. decouple when Thompson scattering freezes out

γ + e− ⇔ γ + e−

zdec ! 1100

5

! Acoustic mode evolution influenced by visibility function
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WHO CARES? 

THE SILK DAMPING TAIL

! From Wayne Hu’s website

!D"N
1/2!C

N=#/!C

! Inhomogeneities are damped for λ <λ D

ldamp ∼ 1000
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WHO CARES? 

FINITE THICKNESS OF THE SLSS

! Additional damping of form

|Θl (η0, k)|→| Θl (η0, k)| e−σ2η2
reck2
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WHO CARES? 

 CMB POLARIZATION

! Need to scatter quadrapole to polarize CMB

! Need time to develop a quadrapole

ΘP
l (k) =

∫
dητ̇e−τ(η)ΘT,2 (k, η)

l2

(kη)2
jl (kη)

Θl (kη) ∼ kη

2τ
Θl (kη)" Θl (η) if l ≥ 2, in tight coupling regime

8

! From Wayne Hu’s website
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WHO CARES?
SPECTRAL DISTORTIONS FROM RECOMBINATION
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! Chemical equilibrium does reasonably well 

predicting “moment of recombination”

SAHA EQUILIBRIUM IS INADEQUATE

p + e− ↔ H(n) + γ(nc)

!Further evolution falls prey to reaction freeze-out

xe = 0.5 when T = Trec ! 0.3 eV

x2
e

1− xe
=

(
13.6
TeV

)3/2

e35.9−13.6/TeV

Γ < H when T < TF ! 0.25 eV

zrec ! 1300
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! Redshifting off resonance

! Two-photon processes

BOTTLENECKS/ESCAPE ROUTES

! Ground state recombinations are ineffective

!Resonance photons are re-captured, e.g. Lyman 

BOTTLENECKS

ESCAPE ROUTES (e.g. n=2)

α

τ−1
c→1s = 10−1 s−1 ! H " 10−12 s−1
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!Net Rate is suppressed by    bottleneck vs. escape factor

THE PEEBLES PUNCHLINE

! Only n=2 bottlenecks are treated

12

−dxe
dt = S

∑
n,l>1s αnl (T )

{
nx2

e − x1se−
B1
kT

(
2πmekT

h2

)3/2
}
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THE PEEBLES MODEL

!Net Rate is suppressed by bottleneck vs. escape factor

13
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Redshifting term

THE PEEBLES MODEL

!Net Rate is suppressed by bottleneck vs. escape factor
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THE PEEBLES MODEL

!Net Rate is suppressed by bottleneck vs. escape factor
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Ionization Term

THE PEEBLES MODEL

!Net Rate is suppressed by bottleneck vs. escape factor
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Ionization Term

THE PEEBLES MODEL

!Net Rate is suppressed by bottleneck vs. escape factor

redshift term
2γ term

! 0.02
Ω1/2

m

(1− xe [z])
(

1+z
1100

)3/2

2γ process dominates until late times (z ! 850)

Ωm
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Ωbh2
Ωmh2

! Peebles 1967: State of the Art for 30 years!

THE PEEBLES MODEL

14
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EQUILIBRIUM ASSUMPTIONS 

! Radiative eq. between different n-states

!Radiative/collisional eq. between different l

!Matter in eq. with radiation due to Thompson scattering

Tm = Tγ since σTaT 4
γ c

mec2 < H(T )

Nn =
∑

l

Nnl = N2e
−(En−E2)/T

15
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EQUILIBRIUM ASSUMPTIONS 

! Radiative eq. between different n-states

!Radiative/collisional eq. between different l

!Matter in eq. with radiation due to Thompson scattering

Tm = Tγ since σTaT 4
γ c

mec2 < H(T )

Nn =
∑

l

Nnl = N2e
−(En−E2)/T

Seager/Scott/Sasselov 2000/RECFAST!

Non-eq rate equations
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BREAKING EQUILIBRIUM

16

! Equilibrium between l states:                 bottleneck

! Beyond this, testing convergence with           is hard!

! Chluba et al. (2005,6) follow l, n separately, get to nmax = 100

nmax

How to proceed if we want 0.01% accuracy in             ?xe(z)

! 0.1 %-level corrections to CMB anisotropies at nmax = 100
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THESE ARE REAL STATES

! Still inside plasma shielding length for n<100000

! JIIJOIIJOIJ

! addaedaed

! Similarly high n are seen in emission line nebulae

17
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THE EFFECT OF RESOLVING  L- SUBSTATES 

! ‘Bottlenecked’ l-substates decay slowly to 1s: Recombination is slower; Chluba al. 2006

l

18
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Resolved l vs unresolved l

18Thursday, October 29, 2009



RECSPARSE AND THE MULTI-LEVEL ATOM

! We implement a multi-level atom computation in a new code, RecSparse!

! Bound-bound rates evaluated using Gordon (1929) formula and verified using WKB 

! Bound-free rates tabulated and integrated at each

! Boltzmann eq. solved for 19
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THE MULTI-LEVEL ATOM (MLA)

! Two photon transitions between n=1 and n=2 are included:

! Net recombination rate:

20
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2s-1s decay rate

THE MULTI-LEVEL ATOM (MLA)

! Two photon transitions between n=1 and n=2 are included:

! Net recombination rate:
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THE MULTI-LEVEL ATOM (MLA)

! Two photon transitions between n=1 and n=2 are included:

! Net recombination rate:

20

Einstein coeff.
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THE MULTI-LEVEL ATOM (MLA)

! Two photon transitions between n=1 and n=2 are included:

! Net recombination rate:

20

Occ. number blueward of line
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THE MULTI-LEVEL ATOM (MLA)

! Two photon transitions between n=1 and n=2 are included:

! Net recombination rate:

20

Escape probability
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THE MULTI-LEVEL ATOM (MLA)

! Two photon transitions between n=1 and n=2 are included:

! Net recombination rate:

20

Lyman series current to ground state

20Thursday, October 29, 2009



RADIATION FIELD: BLACK BODY +
! Escape probability treated in Sobolev approx.

P l,l′

n,n′ =
1− e−τs

τs

! Excess line photons injected into radiation field

R(ν, ν′) = φ(ν)φ(ν′) vth

H(z)
! λ

21

! Ongoing work by collabs and others uses FP eqn. to obtain evolution of                  
ssef  more generally, including:

! Atomic recoil/diffusion, 

! Time-dependence of problem, 

! Coherent scattering,

! Overlap of higher-order Lyman lines,                             Analytic corr. to Sobolev, soon to be in RecSparse

! Higher

! Ultimate goal is to combine all new atomic physics effect in one 

fast recombination code
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! Evolution equations may be re-written in matrix form

STEADY-STATE FOR EXCITED LEVELS

22
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! Evolution equations may be re-written in matrix form

For state l, includes BB transitions out of l to all other l’’, 

photo-ionization, 

O
n d

ia
gonal

2γ transitions to ground state

STEADY-STATE FOR EXCITED LEVELS

22
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! Evolution equations may be re-written in matrix form

For state l, includes BB transitions into l from all other l’

O
ff 

dia
gonal

STEADY-STATE FOR EXCITED LEVELS

22
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! Evolution equations may be re-written in matrix form

Includes recombination to l, 
1 and 2γ transitions from ground state

STEADY-STATE FOR EXCITED LEVELS

22
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! Evolution equations may be re-written in matrix form

STEADY-STATE FOR EXCITED LEVELS

22

For n>1, 

R ! 1 s−1 (e.g. Lyman-α)
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! Physics imposes sparseness on the problem. Solved in closed form to yield 

algebraic          , then 

RAPID MATRIX INVERSION: SPARSITY TO THE RESCUE

! Matrix is  

! Brute force would require A             
for a single time step 

! Dipole selection rules:

n6
max

∼ n2
max × n2

max

23

22
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RAPID MATRIX INVERSION: SPARSITY TO THE RESCUE

24

! RecSparse generates rec. history with 10-8 precision, with computation       
time ~ nmax

2.5: Huge improvement!

! Case of                       runs in less than a day,                      takes ~ 4 days.

! Einstein coefficients to states with                                             : more later!
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FORBIDDEN TRANSITIONS AND RECOMBINATION

! Higher-n       transitions in H important at 7-    for Planck (TT/EE) data 

analysis (Hirata 2008, Kholupenko 2006)

! Some forbidden transitions are important in Helium recombination 

(Dubrovich 2005, Lewis 2006) and would bias cosmological parameter 

estimation.

! !"#"$%&'()*+%$"'%%!"#$%"&'(%$")&$*+,,%-"'$.-/+0&-/"+-"(1,$&2%-"

+34&$'.-'5"4.$0678.$81")&$"98.-6:",.'.".-.81/+/;

25
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QUADRUPOLE   TRANSITIONS AND 

RECOMBINATION

! Coupling to ground state will overwhelmingly dominate:

! Magnetic dipole rates suppressed by several more orders of magnitude

! Hirata, Switzer, Kholupenko, others have considered other `forbidden’ 
processes, two-photon processes in H, E2 transitions in He

! Ground-state electric quadrupole (E2) lines are optically thick!

26
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! Same sparsity pattern of rate matrix, similar to l-changing collisions

! Detailed balance yields net rate

! Lyman lines are optically thick, so 

QUADRUPOLE TRANSITIONS AND RECOMBINATION

27

! Rates obtained using algebra of Coulomb w.f. (Hey 1995) and checked with 
WKB
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RESULTS: STATE OF THE GAS

28
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DEVIATIONS FROM BOLTZMANN EQ:  L-SUBSTATES

RecSparse 
output

29
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DEVIATIONS FROM BOLTZMANN EQ:  L-SUBSTATES

RecSparse 
output

29

Lower l states can easily cascade down, 
and are relatively under-populated
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DEVIATIONS FROM BOLTZMANN EQ:  L-SUBSTATES

RecSparse 
output

29

l=0 can’t cascade down, so s states are not as under-populated
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DEVIATIONS FROM BOLTZMANN EQ:  L-SUBSTATES

RecSparse 
output

29

Higher l are bottlenecked by               (over-pop) 
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DEVIATIONS FROM BOLTZMANN EQ:  L-SUBSTATES

RecSparse 
output

29

Highest l states recombine inefficiently, and are under-populated
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DEVIATIONS FROM BOLTZMANN EQ:  L-SUBSTATES

RecSparse 
output

29

l-substates are highly out of Boltzmann eqb’m at late times
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DEVIATIONS FROM BOLTZMANN EQ:  L-SUBSTATES

RecSparse 
output

29

Why the feature at l=2?

29Thursday, October 29, 2009



WHAT IS THE ORIGIN OF THE L=2 DIP?

! l=2 depopulates more rapidly than l=1 for higher (n>2) excited states

! We can test if this explains the dip at l=2 by running the code with 
these Balmer transitions  the blip should move to l=1

30
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Dip moves as expected when Balmer lines are off!

L-SUBSTATE POPULATIONS, BALMER LINES OFF

31
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ATOMIC COLLISIONS

! l-changing collisions bring l-substates closer to statistical equilibrium (SE)

! Being closer to SE speeds up rec. by mitigating high-l bottleneck (Chluba, Rubino Martin, Sunyaev 2006)

! Theoretical collision rates unknown to factors of 2!

! dddawwdadwaw

! Next we’ll include them to see if we need to model rates better

0 5 10 15 20 25 30
l  (angular momentum quantum number)

-0.2

-0.15

-0.1

-0.05

0

!
N

n
l /

 N
n
l
  

in
 %

no collisions
with collisions

31 40 50 60 70 80 90 99
l

0
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!
N

n
l /

 N
n
l
  

in
 %

z  = 1200, n = 100
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DEVIATIONS FROM BOLTZMANN EQUILIBRIUM: 

DIFFERENT N-SHELLS

33

! No inversion relative to n=2 (just-over 
population)

! Population inversion seen between some 
excited states: Does radiation stay coherent? 
Does recombination mase? Stay tuned

! Dense regions may mase more efficiently: 
maser spots as probe of l.s.s at early times? 
(Spaans and Norman 1997) 
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DEVIATIONS FROM SAHA EQUILIBRIUM

! n=1 suppressed due to freeze-out of 

! Remaining levels ‘try’ to remain in Boltzmann eq. with n=2

! Super-Boltz effects and two-     transitions (n=1      n=2) yield less suppression for n>1

! Effect larger at late times (low z) as rates fall

HUGE DEVIATIONS FROM SAHA EQ!

34
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HUGE DEVIATIONS FROM SAHA EQ!

34

! Effect of states with n> could be approximated using asymptotic Einstein coeffs. 

and Saha eq. populations: but Saha is more elusive at high n/late times. 

! At z=200, we estimate nmax~1000 needed, unless collisions included
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RESULTS: RECOMBINATION HISTORIES

35
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RESULTS: RECOMBINATION HISTORIES INCLUDING HIGH-N 

!           falls with increasing                             , as expected.

! Rec Rate>downward BB Rate> Ionization, upward BB rate

! For                      , code computes in only 2 hours

36
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! Relative convergence is not the same thing as absolute convergence: Want to see Saha asymptote and impose 
well-motivated cutoff!

! Collisions could help

! These are lower limits to the actual error

! nmax=250 and nmax=300 under way to further test convergence (more time consuming)
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RESULTS: RECOMBINATION WITH HYDROGEN 

nmax
nmax

Negligible for Planck!

37
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BUILDING INTUITION FOR THE EFFECT OF E2 TRANSITIONS

38
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BUILDING INTUITION FOR THE EFFECT OF E2 TRANSITIONS
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BUILDING INTUITION FOR THE EFFECT OF E2 TRANSITIONS

38
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Super-horizon scales don’t care about recombination

            RESULTS: TT          WITH HIGH-N STATES Cls

39

Sample variance for Planck
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Sample variance for Planck

            RESULTS: EE          WITH HIGH-N STATES Cls

40
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RESULTS: TEMPERATURE (TT)        WITH HYDROGEN QUADRUPOLES, 

41

TT

Cls
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RESULTS: TEMPERATURE (TT)        WITH HYDROGEN QUADRUPOLES, 

41

TT

Cls

Overall effect is 
negligible for CMB 
experiments!
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RESULTS: POLARIZATION (EE)        WITH HYDROGEN QUADRUPOLES Cls

EE
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Overall effect is 
negligible for upcoming 
CMB experiments!

RESULTS: POLARIZATION (EE)        WITH HYDROGEN QUADRUPOLES Cls

EE
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THE UPSHOT FOR COSMOLOGY

! Can explore effect on overall Planck likelihood analysis

! Parameter biases can be estimated in Fisher formalism
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WRAPPING UP

! RecSparse: a new tool for MLA recombination calculations 

(watch arXiv in coming weeks for a paper on these results)

! Highly excited levels (n~150 and higher) are relevant for 

CMB data analysis 

! E2 transitions in H are not relevant for CMB data analysis

! Future work:

! Include line-overlap

! Develop cutoff method for excluded levels

! Generalize RecSparse to calc. rec. line. spectra

! Compute and include collisional rates

! Fisher/Monte-Carlo analyses 

! Cosmological masers (homogeneous and perturbed)
44
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Bound-free rates

! Using continuum wave functions, bound-free rates are obtained (Burgess 

1957)

! Bound-free matrix elements satisfy a convenient recursion relation:

 Matrix elements compared with Burgess 1965 (5 digits) and with WKB 

approximation (5%):

At each temperature, thermal recombination/ionization rates obtained using 11-

point Newton-Cotes formula, agreement with Burgess to 4 published digits

45
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BB Rate coefficients: verification

WKB estimate of matrix elements ρ(n′l′, nl) = a0n
2

∫ π

−π
dτeiΩτ (1 + cosη)

Ω = ωn − ωn′

r = rmax (1 + cos η) /2
τ = η + sin η

Radial matrix elements checked against WKB (10%), published rates of 

Brocklehurst (1971), Green, Rush, and Chandler (1967) (agreement to 

their published 4 digits)

Fourier transform of classical orbit! 
Application of correspondence 
principle!

46
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Quadrupole rates: basic formalism

! jijioj

Reduced matrix element evaluated using Wigner 3J symbols:

Radial matrix element evaluated using operator methods

47
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Quadrapole rates: Operator algebra

! Radial Schrödinger equation can be factored to 

yield:

This algebra can be applied to radial matrix elements:

48
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Quadrapole rates: Operator algebra

! Radial Schrödinger equation can be factored to 

yield:

This algebra can be applied to radial matrix elements:

Diagonal!
48
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Quadrapole rates: Operator algebra

! Radial Schrödinger equation can be factored to 

yield:

This algebra can be applied to radial matrix elements:

Off-diagonal! 48
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